Circles holding typical convex bodies
نویسندگان
چکیده
We prove here that, for most convex bodies, the space of all holding circles has infinitely many components.
منابع مشابه
Holding Circles and Fixing Frames
A circle C holds a convex body K ⊂ R3 if K can’t be moved far away from its position without intersecting C . One of our results says that there is a convex body K ⊂ R3 such that the set of radii of all circles holding K has infinitely many components. Another result says that the circle is unique in the sense that every frame different from the circle holds a convex body K (actually a tetrahed...
متن کاملA convex combinatorial property of compact sets in the plane and its roots in lattice theory
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...
متن کاملCurvatures of typical convex bodies—the complete picture
It is known that a typical n-dimensional convex body, in the Baire category sense, has the property that its set of umbilics of zero curvature has full measure in the boundary of the body. We show that a typical convex body has in addition the following properties. The spherical image of the set of umbilics of zero curvature has measure zero. The set of umbilics of infinite curvature is dense i...
متن کاملTypical curvature behaviour of bodies of constant width
It is known that an n-dimensional convex body which is typical in the sense of Baire category, shows a simple, but highly non-intuitive curvature behaviour: at almost all of its boundary points, in the sense of measure, all curvatures are zero, but there is also a dense and uncountable set of boundary points at which all curvatures are infinite. The purpose of this paper is to find a counterpar...
متن کاملPointwise Estimates for Marginals of Convex Bodies
We prove a pointwise version of the multi-dimensional central limit theorem for convex bodies. Namely, let μ be an isotropic, log-concave probability measure on Rn. For a typical subspace E ⊂ Rn of dimension nc, consider the probability density of the projection of μ onto E. We show that the ratio between this probability density and the standard gaussian density in E is very close to 1 in larg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013